If it's not what You are looking for type in the equation solver your own equation and let us solve it.
t^2+5t+3=0
a = 1; b = 5; c = +3;
Δ = b2-4ac
Δ = 52-4·1·3
Δ = 13
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(5)-\sqrt{13}}{2*1}=\frac{-5-\sqrt{13}}{2} $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(5)+\sqrt{13}}{2*1}=\frac{-5+\sqrt{13}}{2} $
| 3.5x-10=3x | | -4a+5(-6a+5)=-27-8a | | 1.2x7.5=8.5 | | 6k-13=14k+5 | | A(n)=2n-10 | | 6(8x-8)+7=103 | | 29-4x=6x+5 | | 8(b-3)=-2(b+7) | | 3(x-4)=2(-2×+1) | | 72+54+x=180 | | 92+54+x=180 | | 89+43+x=180 | | 7v+6v=0 | | 4x−2x=−6 | | 3(x+2)—14=16 | | 1d+23=14(d−2) | | 3x+7+50+90=180 | | x+89+48+48=180 | | |1+3x|=x+5 | | 11x+13=-29 | | 4x+2x-1=20÷5 | | x+66+40+80=180 | | 12-u=-4 | | x+75+49+57=180 | | x+53+80+55=180 | | x+57+71+57=180 | | |1-3x|=x+5 | | 3x+17+70+60=180 | | x+79+23+90=180 | | X-30=-2x+24 | | a-16=-52 | | -10+14x=14x+3 |